Что проекция точки. Урок черчения "построение проекций точек на поверхности предмета". Iv этап. заключительный

Вспомогательная прямая комплексного чертежа

На чертеже, представленном на рис. 4.7, а, проведены оси проекций, а изображения соединены между собой линиями связи. Горизонтальная и профильная проекции соединены линиями связи с помощью дуг с центром в точке О пересечения осей. Однако в практике применяют и другое выполнение комплексного чертежа.

На безосных чертежах изображения располагают также в проекционной связи. Однако третья проекция может быть помещена ближе или дальше. Например, профильная проекция может быть размещена правее (рис. 4.7, б, II ) или левее (рис. 4.7, б, I ). Это важно для экономии места и удобства нанесения размеров.

Рис. 4.7.

Если на чертеже, выполненном по безосной системе, требуется провести между видом сверху и видом слева линии связи, то применяют вспомогательную прямую комплексного чертежа. Для этого примерно на уровне вида сверху и немного правее его проводят прямую под утлом 45° к рамке чертежа (рис. 4.8, а ). Она называется вспомогательной прямой комплексного чертежа. Порядок построения чертежа с помощью этой прямой показан на рис. 4.8, б, в.

Если три вида уже построены (рис. 4.8, г), то положение вспомогательной прямой выбирать произвольно нельзя. Сначала нужно найти точку, через которую она пройдет. Для этого достаточно продолжить до взаимного пересечения оси симметрии горизонтальной и профильной проекций и через полученную точку k провести под углом 45° отрезок прямой (рис. 4.8, д ). Если осей симметрии нет, то продолжают до пересечения в точке k 1 горизонтальную и профильные проекции любой грани, проецирующейся в виде прямой (рис. 4.8, д ).

Рис. 4.8.

Необходимость в проведении линий связи, а следовательно, и вспомогательной прямой возникает при построении недостающих проекций и при выполнении чертежей, на которых требуется определить проекции точек, чтобы уточнить проекции отдельных элементов детали.

Примеры использования вспомогательной прямой даны в следующем параграфе.

Проекции точки, лежащей на поверхности предмета

Для того чтобы при выполнении чертежей правильно строить проекции отдельных элементов детали, необходимо уметь находить на всех изображениях чертежа проекции отдельных точек. Например, трудно вычертить горизонтальную проекцию детали, представленной на рис. 4.9, не пользуясь проекциями отдельных точек (А, В, C, D, E и др.). Умение находить все проекции точек, ребер, граней необходимо и для воссоздания в воображении формы предмета по его плоским изображениям на чертеже, а также для проверки правильности выполненного чертежа.

Рис. 4.9.

Рассмотрим способы нахождения второй и третьей проекций точки, заданной на поверхности предмета.

Если на чертеже предмета дана одна проекция точки, то прежде надо найти проекции поверхности, на которой расположена эта точка. Затем выбирают один из двух описанных ниже приемов решения задачи.

Первый способ

Этот способ применяется, когда хотя бы на одной из проекций данная поверхность изображается в виде линии.

На рис. 4.10, а изображен цилиндр, на фронтальной проекции которого задана проекция а" точки А, лежащей на видимой части его поверхности (заданные проекции отмечены двойными цветными окружностями). Чтобы найти горизонтальную проекцию точки А, рассуждают так: точка лежит на поверхности цилиндра, горизонтальная проекция которой – окружность. Значит, и проекция точки, лежащей на этой поверхности, будет лежать на окружности. Проводят линию связи и на пересечении ее с окружностью отмечают искомую точку а. Третью проекцию а"

Рис. 4.10.

Если же точка В, лежащая на верхнем основании цилиндра, задана своей горизонтальной проекцией b, то проводят линии связи до пересечения с отрезками прямых, изображающих фронтальную и профильную проекции верхнего основания цилиндра.

На рис. 4.10, б представлена деталь – упор. Чтобы построить проекции точки А, заданной своей горизонтальной проекцией а, находят две другие проекции верхней грани (на которой лежит точка А ) и, проведя линии связи до пересечения с отрезками прямых, изображающих эту грань, определяют искомые проекции – точки а" и а". Точка В лежит на левой боковой вертикальной грани, значит, и ее проекции будут лежать на проекциях этой грани. Поэтому из заданной точки b" проводят линии связи (как указано стрелками) до встречи их с отрезками прямых, изображающих эту грань. Фронтальную проекцию с" точки С, лежащей на наклонно расположенной (в пространстве) грани, находят на линии, изображающей эту грань, а профильную с" – на пересечении линии связи, так как профильная проекция этой грани не линия, а фигура. Построение проекций точки D показано стрелками.

Второй способ

Этот способ применяют, когда первым способом пользоваться нельзя. Тогда следует поступить так:

  • провести через заданную проекцию точки проекцию вспомогательной линии, расположенной на данной поверхности;
  • найти вторую проекцию этой линии;
  • на найденную проекцию линии перенести заданную проекцию точки (этим будет определена вторая проекция точки);
  • найти третью проекцию (если это требуется) на пересечении линий связи.

На рис. 4.10, в дана фронтальная проекция а" точки А, лежащей на видимой части поверхности конуса. Для нахождения горизонтальной проекции через точку а" проводят фронтальную проекцию вспомогательной прямой, проходящей через точку А и вершину конуса. Получают точку V – проекцию точки встречи проведенной прямой с основанием конуса. Имея фронтальные проекции точек, лежащих на прямой, можно найти их горизонтальные проекции. Горизонтальная проекция s вершины конуса известна. Точка b лежит на окружности основания. Через эти точки проводят отрезок прямой и переносят на него (как показано стрелкой) точку а", получая точку а. Третья проекция а" точки А находится на пересечении линии связи.

Эту же задачу можно решить иначе (рис. 4.10, г ).

В качестве вспомогательной линии, проходящей через точку А, берут не прямую, как в первом случае, а окружность. Эта окружность образуется, если в точке А пересечь конус плоскостью, параллельной основанию, как показано на наглядном изображении. Фронтальная проекция этой окружности изобразится отрезком прямой, так как плоскость окружности перпендикулярна фронтальной плоскости проекций. Горизонтальная проекция окружности имеет диаметр, равный длине этого отрезка. Описав окружность указанного диаметра, проводят из точки а" линию связи до пересечения со вспомогательной окружностью, так как горизонтальная проекция а точки А лежит на вспомогательной линии, т.е. на построенной окружности. Третью проекцию aс" точки А находят на пересечении линий связи.

Таким же приемом можно найти проекции точки, лежащей на поверхности, например, пирамиды. Разница будет в том, что при ее пересечении горизонтальной плоскостью образуется не окружность, а фигура, подобная основанию.

ПРОЕЦИРОВАНИЕ ТОЧКИ НА ДВЕ ПЛОСКОСТИ ПРОЕКЦИЙ

Образование отрезка прямой линии АА 1 можно представить как результат перемещения точки А в какой-либо плоскости Н (рис. 84, а), а образование плоскости - как перемещение отрезка прямой линии АВ (рис. 84, б).

Точка - основной геометрический элемент линии и поверхности, поэтому изучение прямоугольного проецирования предмета начинается с построения прямоугольных проекций точки.

В пространство двугранного угла, образованного двумя перпендикулярными плоскостями - фронтальной (вертикальной) плоскостью проекций V и горизонтальной плоскостью проекций Н, поместим точку А (рис. 85, а).

Линия пересечения плоскостей проекций - прямая, которая называется осью проекций и обозначается буквой х.

Плоскость V здесь изображена в виде прямоугольника, а плоскость Н - в виде параллелограмма. Наклонную сторону этого параллелограмма обычно проводят под углом 45° к его горизонтальной стороне. Длина наклонной стороны берется равной 0,5 ее действительной длины.

Из точки А опускают перпендикуляры на плоскости V и Н. Точки а"и а пересечения перпендикуляров с плоскостями проекций V и Н являются прямоугольными проекциями точки А. Фигура Ааа х а" в пространстве - прямоугольник. Сторона аах этого прямоугольника на наглядном изображении уменьшается в 2 раза.

Совместим плоскости Н с плоскостью V ,вращая V вокруг линии пересечения плоскостей х. В результате получается комплексный чертеж точки А (рис. 85, б)

Для упрощения комплексного чертежа границы плоскостей проекций V и Н не указывают (рис. 85, в).

Перпендикуляры, проведенные из точки А к плоскостям проекций, называются проецирующими линиями, а основания этих проецирующих линий - точки а и а" - называются проекциями точки А: а" - фронтальная проекция точки А, а - горизонтальная проекция точки А.

Линия а" а называется вертикальной линией проекционной связи.

Расположение проекции точки на комплексном чертеже зависит от положения этой точки в пространстве.

Если точка А лежит на горизонтальной плоскости проекций Н (рис. 86, а), то ее горизонтальная проекция а совпадает с заданной точкой, а фронтальная проекция а" располагается на оси При расположении точки В на фронтальной плоскости проекций V ее фронтальная проекция совпадает с этой точкой, а горизонтальная проекция лежит на оси х. Горизонтальная и фронтальная проекции заданной точки С, лежащей на оси х, совпадают с этой точкой. Комплексный чертеж точек А, В и С показан на рис. 86, б.

ПРОЕЦИРОВАНИЕ ТОЧКИ НА ТРИ ПЛОСКОСТИ ПРОЕКЦИЙ

В тех случаях, когда по двум проекциям нельзя представить себе форму предмета, его проецируют на три плоскости проекций. В этом случае вводится профильная плоскость проекций W, перпендикулярная плоскостям V и Н. Наглядное изображение системы из трех плоскостей проекций дано на рис. 87, а.

Ребра трехгранного угла (пересечение плоскостей проекций) называются осями проекций и обозначаются x, у и z. Пересечение осей проекций называется началом осей проекций и обозначается буквой О. Опустим из точки А перпендикуляр на плоскость проекций W и, отметив основание перпендикуляра буквой а", получим профильную проекцию точки А.

Для получения комплексного чертежа точки А плоскости Н и W совмещают с плоскостью V, вращая их вокруг осей Ох и Oz. Комплексный чертеж точки А показан на рис. 87, б и в.

Отрезки проецирующих линий от точки А до плоскостей проекций называются координатами точки А и обозначаются: х А, у А и z A .

Например, координата z A точки А, равная отрезку а"а х (рис. 88, а и б), есть расстояние от точки А до горизонтальной плоскости проекций Н. Координата у точки А, равная отрезку аа х, есть расстояние от точки А до фронтальной плоскости проекций V. Координата х А, равная отрезку аа у - расстояние от точки А до профильной плоскости проекций W.

Таким образом, расстояние между проекцией точки и осью проекции определяют координаты точки и являются ключом к чтению ее комплексного чертежа. По двум проекциям точки можно определить все три координаты точки.

Если заданы координаты точки А (например, х А =20 мм, у А =22мм и z A = 25 мм), то можно построить три проекции этой точки.

Для этого от начала координат О по направлению оси Oz откладывают вверх координату z A и вниз координату у А.Из концов отложенных отрезков - точек a z и а у (рис. 88, а) - проводят прямые, параллельные оси Ох, и на них откладывают отрезки, равные координате х А. Полученные точки а" и а - фронтальная и горизонтальная проекции точки А.

По двум проекциям а" и а точки А построить ее профильную проекцию можно тремя способами:

1) из начала координат О проводят вспомогательную дугу радиусом Оа у, равным координате (рис. 87, б и в), из полученной точки а у1 проводят прямую, параллельную оси Oz, и откладывают отрезок, равный z A ;

2) из точки а у проводят вспомогательную прямую под углом 45° к оси Оу (рис. 88, а), получают точку а у1 и т. д.;

3) из начала координат О проводят вспомогательную прямую под углом 45° к оси Оу (рис. 88, б), получают точку а у1 и т. д.

Рассмотрим проекции точек на две плоскости, для чего возьмем две перпендикулярные плоскости (рис. 4), которые будем называть горизонтальной фронтальной и плоскостями. Линию пересечения данных плоскостей называют осью проекций. На рассмотренные плоскости спроецируем одну точку А с помощью плоской проекции. Для этого необходимо опустить из данной точки перпендикуляры Аа и A на рассмотренные плоскости.

Проекцию на горизонтальную плоскость называют горизонтальной проекцией точки А , а проекцию а? на фронтальную плоскость называют фронтальной проекцией .


Точки, которые подлежат проецированию, в начертательной геометрии принято обозначать с помощью больших латинских букв А, В, С . Для обозначения горизонтальных проекций точек применяют малые буквы а, b, с … Фронтальные проекции обозначают малыми буквами со штрихом вверху а?, b?, с?

Применяется также и обозначение точек римскими цифрами I, II,… а для их проекций – арабскими цифрами 1, 2… и 1?, 2?…

При повороте горизонтальной плоскости на 90° можно получить чертеж, в котором обе плоскости находятся в одной плоскости (рис. 5). Данная картина называется эпюром точки .


Через перпендикулярные прямые Аа и Аа? проведем плоскость (рис. 4). Полученная плоскость является перпендикулярной фронтальной и горизонтальной плоскостям, потому что содержит перпендикуляры к этим плоскостям. Следовательно, данная плоскость перпендикулярна линии пересечения плоскостей. Полученная прямая пересекает горизонтальную плоскость по прямой аа х, а фронтальную плоскость – по прямой а?а х. Прямые аах и а?а х являются перпендикулярными оси пересечения плоскостей. То есть Аааха? является прямоугольником.

При совмещении горизонтальной и фронтальной плоскостей проекции а и а? будут лежать на одном перпендикуляре к оси пересечения плоскостей, так как при вращении горизонтальной плоскости перпендикулярность отрезков аа х и а?а х не нарушится.

Получаем, что на эпюре проекции а и а? некоторой точки А всегда лежат на одном перпендикуляре к оси пересечения плоскостей.

Две проекции а и а? некоторой точки А могут однозначно определить ее положение в пространстве (рис. 4). Это подтверждается тем, что при построении перпендикуляра из проекции а к горизонтальной плоскости он пройдет через точку А. Точно так же перпендикуляр из проекции а? к фронтальной плоскости пройдет через точку А , т. е. точка А находится одновременно на двух определенных прямых. Точка А является их точкой пересечения, т. е. является определенной.

Рассмотрим прямоугольник Aaa х а? (рис. 5), для которого справедливы следующие утверждения:

1) Расстояние точки А от фронтальной плоскости равно расстоянию ее горизонтальной проекции а от оси пересечения плоскостей, т. е.

Аа? = аа х;

2) расстояние точки А от горизонтальной плоскости проекций равно расстоянию ее фронтальной проекции а? от оси пересечения плоскостей, т. е.

Аа = а?а х.

Иначе говоря, даже без самой точки на эпюре, используя только две ее проекции, можно узнать, на каком расстоянии от каждой из плоскостей проекций находится данная точка.

Пересечение двух плоскостей проекций разделяет пространство на четыре части, которые называют четвертями (рис. 6).

Ось пересечения плоскостей делит горизонтальную плоскость на две четверти – переднюю и заднюю, а фронтальную плоскость – на верхнюю и нижнюю четверти. Верхнюю часть фронтальной плоскости и переднюю часть горизонтальной плоскости рассматривают как границы первой четверти.


При получении эпюра вращается горизонтальная плоскость и совмещается с фронтальной плоскостью (рис. 7). В этом случае передняя часть горизонтальной плоскости совпадет с нижней частью фронтальной плоскости, а задняя часть горизонтальной плоскости – с верхней частью фронтальной плоскости.


На рисунках 8-11 показаны точки А, В, С, D, располагающиеся в различных четвертях пространства. Точка А расположена в первой четверти, точка В – во второй, точка С – в третьей и точка D – в четвертой.


При расположении точек в первой или четвертой четвертях их горизонтальные проекции находятся на передней части горизонтальной плоскости, а на эпюре они лягут ниже оси пересечения плоскостей. Когда точка расположена во второй или третьей четверти, ее горизонтальная проекция будет лежать на задней части горизонтальной плоскости, а на эпюре будет находиться выше оси пересечения плоскостей.


Фронтальные проекции точек, которые расположены в первой или второй четвертях, будут лежать на верхней части фронтальной плоскости, а на эпюре будут находиться выше оси пересечения плоскостей. Когда точка расположена в третьей или четвертой четверти, ее фронтальная проекция – ниже оси пересечения плоскостей.

Чаще всего при реальных построениях фигуру располагают в первой четверти пространства.

В некоторых частных случаях точка (Е ) может лежать на горизонтальной плоскости (рис. 12). В этом случае ее горизонтальная проекция е и сама точка будут совпадать. Фронтальная проекция такой точки будет находиться на оси пересечения плоскостей.

В случае, когда точка К лежит на фронтальной плоскости (рис. 13), ее горизонтальная проекция k лежит на оси пересечения плоскостей, а фронтальная k? показывает фактическое местонахождение этой точки.


Для подобных точек признаком того, что она лежит на одной из плоскостей проекций, служит то, что одна ее проекция находится на оси пересечения плоскостей.

Если точка лежит на оси пересечения плоскостей проекций, она и обе ее проекции совпадают.

Когда точка не лежит на плоскостях проекций, она называется точкой общего положения . В дальнейшем, если нет особых отметок, рассматриваемая точка является точкой общего положения.

2. Отсутствие оси проекций

Для пояснения получения на модели проекций точки на перпендикулярные плоскости проекций (рис. 4) необходимо взять кусок плотной бумаги в форме удлиненного прямоугольника. Его нужно согнуть между проекциями. Линия сгиба будет изображать ось пересечения плоскостей. Если после этого согнутый кусок бумаги вновь расправить, получим эпюр, похожий на тот, что изображен на рисунке.

Совмещая две плоскости проекций с плоскостью чертежа, можно не показывать линию сгиба, т. е. не проводить на эпюре ось пересечения плоскостей.

При построениях на эпюре всегда следует располагать проекции а и а? точки А на одной вертикальной прямой (рис. 14), которая перпендикулярна оси пересечения плоскостей. Поэтому, даже если положение оси пересечения плоскостей остается неопределенным, но ее направление определено, ось пересечения плоскостей может находиться на эпюре только перпендикулярно прямой аа? .


Если на эпюре точки нет оси проекций, как на первом рисунке 14 а, можно представить положение этой точки в пространстве. Для этого проведем в любом месте перпендикулярно прямой аа? ось проекции, как на втором рисунке (рис. 14) и согнем чертеж по этой оси. Если восстановить перпендикуляры в точках а и а? до их пересечения, можно получить точку А . При изменении положения оси проекций получаются различные положения точки относительно плоскостей проекций, но неопределенность положения оси проекций не влияет на взаимное расположение нескольких точек или фигур в пространстве.

3. Проекции точки на три плоскости проекций

Рассмотрим профильную плоскость проекций. Проекции на две перпендикулярные плоскости обычно определяют положение фигуры и дают возможность узнать ее настоящие размеры и форму. Но бывают случаи, когда двух проекций оказывается недостаточно. Тогда применяют построение третьей проекции.

Третью плоскость проекции проводят так, чтобы она была перпендикулярна одновременно обеим плоскостям проекций (рис. 15). Третью плоскость принято называть профильной .

В таких построениях общую прямую горизонтальной и фронтальной плоскостей называют осью х , общую прямую горизонтальной и профильной плоскостей – осью у , а общую прямую фронтальной и профильной плоскостей – осью z . Точка О , которая принадлежит всем трем плоскостям, называется точкой начала координат.


На рисунке 15а показана точка А и три ее проекции. Проекцию на профильную плоскость (а?? ) называют профильной проекцией и обозначают а?? .

Для получения эпюра точки А, которая состоит из трех проекций а, а а , необходимо разрезать трехгранник, образующийся всеми плоскостями, вдоль оси у (рис. 15б) и совместить все эти плоскости с плоскостью фронтальной проекции. Горизонтальную плоскость необходимо вращать около оси х , а профильную плоскость – около оси z в направлении, указанном на рисунке 15 стрелкой.

На рисунке 16 изображено положение проекций а, а? и а?? точки А , полученное в результате совмещения всех трех плоскостей с плоскостью чертежа.

В результате разреза ось у встречается на эпюре в двух различных местах. На горизонтальной плоскости (рис. 16) она принимает вертикальное положение (перпендикулярно оси х ), а на профильной плоскости – горизонтальное (перпендикулярно оси z ).


На рисунке 16 три проекции а, а? и а?? точки А имеют на эпюре строго определенное положение и подчинены однозначным условиям:

а и а? всегда должны располагаться на одной вертикальной прямой, перпендикулярной оси х ;

а? и а?? всегда должны располагаться на одной горизонтальной прямой, перпендикулярной оси z ;

3) при проведении через горизонтальную проекцию а горизонтальной прямой, а через профильную проекцию а?? – вертикальной прямой построенные прямые обязательно пересекутся на биссектрисе угла между осями проекций, так как фигура Оа у а 0 а н – квадрат.

При выполнении построения трех проекций точки нужно проверять выполняемость всех трех условий для каждой точки.

4. Координаты точки

Положение точки в пространстве может быть определено с помощью трех чисел, называемых ее координатами . Каждой координате соответствует расстояние точки от какой-нибудь плоскости проекций.

Расстояние определяемой точки А до профильной плоскости является координатой х , при этом х = а?А (рис. 15), расстояние до фронтальной плоскости – координатой у, причем у = а?А , а расстояние до горизонтальной плоскости – координатой z , при этом z = aA .

На рисунке 15 точка А занимает ширину прямоугольного параллелепипеда, и измерения этого параллелепипеда соответствуют координатам этой точки, т. е., каждая из координат представлена на рисунке 15 четыре раза, т. е.:

х = а?А = Оа х = а у а = a z a?;

y = а?А = Оа y = а x а = а z а?;

z = aA = Oa z = а x а? = а y а?.

На эпюре (рис. 16) координаты х и z встречаются по три раза:

х = а z а?= Оа x = а y а,

z = а x a? = Oa z = а y а?.

Все отрезки, которые соответствуют координате х (или z ), являются параллельными между собой. Координата у два раза представлена осью, расположенной вертикально:

y = Оа у = а х а

и два раза – расположенной горизонтально:

у = Оа у = а z а?.

Данное различие появилось из-за того, что ось у присутствует на эпюре в двух различных положениях.

Следует учесть, что положение каждой проекции определяется на эпюре только двумя координатами, а именно:

1) горизонтальной – координатами х и у ,

2) фронтальной – координатами x и z ,

3) профильной – координатами у и z .

Используя координаты х, у и z , можно построить проекции точки на эпюре.

Если точка А задается координатами, их запись определяется так: А (х; у; z ).

При построении проекций точки А нужно проверять выполняемость следующих условий:

1) горизонтальная и фронтальная проекции а и а? х х ;

2) фронтальная и профильная проекции а? и а? должны располагаться на одном перпендикуляре к оси z , так как имеют общую координату z ;

3) горизонтальная проекция а так же удалена от оси х , как и профильная проекция а удалена от оси z , так как проекции а? и а? имеют общую координату у .

В случае, если точка лежит в любой из плоскостей проекций, то одна из ее координат равна нулю.

Когда точка лежит на оси проекций, две ее координаты равны нулю.

Если точка лежит в начале координат, все три ее координаты равны нулю.


Эта статья является ответом на два вопроса: «Что такое » и «Как найти координаты проекции точки на плоскость »? Сначала дана необходимая информация о проецировании и его видах. Далее приведено определение проекции точки на плоскость и дана графическая иллюстрация. После этого получен метод нахождения координат проекции точки на плоскость. В заключении разобраны решения примеров, в которых вычисляются координаты проекции заданной точки на заданную плоскость.

Навигация по странице.

Проецирование, виды проецирования – необходимая информация.

При изучении пространственных фигур удобно пользоваться их изображениями на чертеже. Чертеж пространственной фигуры представляет собой так называемую проекцию этой фигуры на плоскость. Процесс построения изображения пространственной фигуры на плоскости происходит по определенным правилам. Так вот процесс построения изображения пространственной фигуры на плоскости вместе с набором правил, по которым осуществляется этот процесс, называется проецированием фигуры на данную плоскость. Плоскость, в которой строится изображение, называют плоскостью проекции .

В зависимости от правил, по которым осуществляется проецирование, различают центральное и параллельное проецирование . Вдаваться в подробности не станем, так как это выходит за рамки этой статьи.

В геометрии в основном используется частный случай параллельного проецирования - перпендикулярное проецирование , которое также называют ортогональным . В названии этого вида проецирования прилагательное «перпендикулярное» часто опускается. То есть, когда в геометрии говорят о проекции фигуры на плоскость, то обычно подразумевают, что эта проекция была получена с помощью перпендикулярного проецирования (если, конечно, не оговорено другое).

Следует отметить, что проекция фигуры на плоскость представляет собой совокупность проекций всех точек этой фигуры на плоскость проекции. Иными словами, чтобы получить проекцию некоторой фигуры необходимо уметь находить проекции точек этой фигуры на плоскость. В следующем пункте статьи как раз показано, как найти проекцию точки на плоскость.

Проекция точки на плоскость – определение и иллюстрация.

Еще раз подчеркнем, что мы будем говорить о перпендикулярной проекции точки на плоскость.

Выполним построения, которые помогут нам дать определение проекции точки на плоскость.

Пусть в трехмерном пространстве нам задана точка М 1 и плоскость . Проведем через точку М 1 прямую a , перпендикулярную к плоскости . Если точка М 1 не лежит в плоскости , то обозначим точку пересечения прямой a и плоскости как H 1 . Таким образом, точка H 1 по построению является основанием перпендикуляра, опущенного из точки M 1 на плоскость .

Определение.

Проекция точки М 1 на плоскость - это сама точка М 1 , если , или точка H 1 , если .

Данному определению проекции точки на плоскость эквивалентно следующее определение.

Определение.

Проекция точки на плоскость – это либо сама точка, если она лежит в заданной плоскости, либо основание перпендикуляра, опущенного из этой точки на заданную плоскость.

На приведенном ниже чертеже точка H 1 есть проекция точки М 1 на плоскость ; точка М 2 лежит в плоскости , поэтому М 2 – проекция самой точки М 2 на плоскость .

Нахождение координат проекции точки на плоскость – решения примеров.

Пусть в трехмерном пространстве введена Oxyz , задана точка и плоскость . Поставим перед собой задачу: определить координаты проекции точки М 1 на плоскость .

Решение задачи логически следует из определения проекции точки на плоскость.

Обозначим проекцию точки М 1 на плоскость как H 1 . По определению проекции точки на плоскость, H 1 – это точка пересечения заданной плоскости и прямой a , проходящей через точку М 1 перпендикулярно к плоскости . Таким образом, искомые координаты проекции точки М 1 на плоскость - это координаты точки пересечения прямой a и плоскости .

Следовательно, чтобы найти координаты проекции точки на плоскость нужно:

Рассмотрим решения примеров.

Пример.

Найдите координаты проекции точки на плоскость .

Решение.

В условии задачи нам дано общее уравнение плоскости вида , так что его составлять не нужно.

Напишем канонические уравнения прямой a , которая проходит через точку М 1 перпендикулярно к заданной плоскости. Для этого получим координаты направляющего вектора прямой a . Так как прямая a перпендикулярна к заданной плоскости, то направляющим вектором прямой a является нормальный вектор плоскости . То есть, - направляющий вектор прямой a . Теперь мы можем написать канонические уравнения прямой в пространстве , которая проходит через точку и имеет направляющий вектор :
.

Чтобы получить требуемые координаты проекции точки на плоскость, осталось определить координаты точки пересечения прямой и плоскости . Для этого от канонических уравнений прямой переходим к уравнениям двух пересекающихся плоскостей , составляем систему уравнений и находим ее решение. Используем :

Таким образом, проекция точки на плоскость имеет координаты .

Ответ:

Пример.

В прямоугольной системе координат Oxyz в трехмерном пространстве заданы точки и . Определите координаты проекции точки М 1 на плоскость АВС .

Решение.

Напишем сначала уравнение плоскости, проходящей через три заданные точки :

Но давайте рассмотрим альтернативный подход.

Получим параметрические уравнения прямой a , которая проходит через точку и перпендикулярна к плоскости АВС . Нормальный вектор плоскости имеет координаты , следовательно, вектор является направляющим вектором прямой a . Теперь мы можем написать параметрические уравнения прямой в пространстве , так как знаем координаты точки прямой () и координаты ее направляющего вектора ():

Осталось определить координаты точки пересечения прямой и плоскости . Для этого в уравнение плоскости подставим :
.

Теперь по параметрическим уравнениям вычислим значения переменных x , y и z при :
.

Таким образом, проекция точки М 1 на плоскость АВС имеет координаты .

Ответ:

В заключении давайте обсудим нахождение координат проекции некоторой точки на координатные плоскости и плоскости, параллельные координатным плоскостям.

Проекциями точки на координатные плоскости Oxy , Oxz и Oyz являются точки с координатами и соответственно. А проекциями точки на плоскости и , которые параллельны координатным плоскостям Oxy , Oxz и Oyz соответственно, являются точки с координатами и .

Покажем, как были получены эти результаты.

Для примера найдем проекцию точки на плоскость (остальные случаи аналогичны этому).

Эта плоскость параллельна координатной плоскости Oyz и - ее нормальный вектор. Вектор является направляющим вектором прямой, перпендикулярной к плоскости Oyz . Тогда параметрические уравнения прямой, проходящей через точку М 1 перпендикулярно к заданной плоскости, имеют вид .

Найдем координаты точки пересечения прямой и плоскости . Для этого сначала подставляем в уравнение равенства : , и проекция точки

  • Бугров Я.С., Никольский С.М. Высшая математика. Том первый: элементы линейной алгебры и аналитической геометрии.
  • Ильин В.А., Позняк Э.Г. Аналитическая геометрия.
  • Рассмотрим профильную плоскость проекций. Проекции на две перпендикулярные плоскости обычно определяют положение фигуры и дают возможность узнать ее настоящие размеры и форму. Но бывают случаи, когда двух проекций оказывается недостаточно. Тогда применяют построение третьей проекции.

    Третью плоскость проекции проводят так, чтобы она была перпендикулярна одновременно обеим плоскостям проекций (рис. 15). Третью плоскость принято называть профильной .

    В таких построениях общую прямую горизонтальной и фронтальной плоскостей называют осью х , общую прямую горизонтальной и профильной плоскостей – осью у , а общую прямую фронтальной и профильной плоскостей – осью z . Точка О , которая принадлежит всем трем плоскостям, называется точкой начала координат.

    На рисунке 15а показана точка А и три ее проекции. Проекцию на профильную плоскость (а́́ ) называют профильной проекцией и обозначают а́́ .

    Для получения эпюра точки А, которая состоит из трех проекций а, а а , необходимо разрезать трехгранник, образующийся всеми плоскостями, вдоль оси у (рис. 15б) и совместить все эти плоскости с плоскостью фронтальной проекции. Горизонтальную плоскость необходимо вращать около оси х , а профильную плоскость – около оси z в направлении, указанном на рисунке 15 стрелкой.

    На рисунке 16 изображено положение проекций а, а́ и а́́ точки А , полученное в результате совмещения всех трех плоскостей с плоскостью чертежа.

    В результате разреза ось у встречается на эпюре в двух различных местах. На горизонтальной плоскости (рис. 16) она принимает вертикальное положение (перпендикулярно оси х ), а на профильной плоскости – горизонтальное (перпендикулярно оси z ).



    На рисунке 16 три проекции а, а́ и а́́ точки А имеют на эпюре строго определенное положение и подчинены однозначным условиям:

    а и а́ всегда должны располагаться на одной вертикальной прямой, перпендикулярной оси х ;

    а́ и а́́ всегда должны располагаться на одной горизонтальной прямой, перпендикулярной оси z ;

    3) при проведении через горизонтальную проекцию а горизонтальной прямой, а через профильную проекцию а́́ – вертикальной прямой построенные прямые обязательно пересекутся на биссектрисе угла между осями проекций, так как фигура Оа у а 0 а н – квадрат.

    При выполнении построения трех проекций точки нужно проверять выполняемость всех трех условий для каждой точки.

    Координаты точки

    Положение точки в пространстве может быть определено с помощью трех чисел, называемых ее координатами . Каждой координате соответствует расстояние точки от какой-нибудь плоскости проекций.

    Расстояние определяемой точки А до профильной плоскости является координатой х , при этом х = а˝А (рис. 15), расстояние до фронтальной плоскости – координатой у, причем у = а́А , а расстояние до горизонтальной плоскости – координатой z , при этом z = aA .

    На рисунке 15 точка А занимает ширину прямоугольного параллелепипеда, и измерения этого параллелепипеда соответствуют координатам этой точки, т. е., каждая из координат представлена на рисунке 15 четыре раза, т. е.:

    х = а˝А = Оа х = а у а = a z á;

    y = а́А = Оа y = а x а = а z а˝;

    z = aA = Oa z = а x а́ = а y а˝.

    На эпюре (рис. 16) координаты х и z встречаются по три раза:

    х = а z а ́= Оа x = а y а,

    z = а x á = Oa z = а y а˝.

    Все отрезки, которые соответствуют координате х (или z ), являются параллельными между собой. Координата у два раза представлена осью, расположенной вертикально:

    y = Оа у = а х а

    и два раза – расположенной горизонтально:

    у = Оа у = а z а˝.

    Данное различие появилось из-за того, что ось у присутствует на эпюре в двух различных положениях.

    Следует учесть, что положение каждой проекции определяется на эпюре только двумя координатами, а именно:

    1) горизонтальной – координатами х и у ,

    2) фронтальной – координатами x и z ,

    3) профильной – координатами у и z .

    Используя координаты х, у и z , можно построить проекции точки на эпюре.

    Если точка А задается координатами, их запись определяется так: А (х; у; z ).

    При построении проекций точки А нужно проверять выполняемость следующих условий:

    1) горизонтальная и фронтальная проекции а и а́ х х ;

    2) фронтальная и профильная проекции а́ и а˝ должны располагаться на одном перпендикуляре к оси z , так как имеют общую координату z ;

    3) горизонтальная проекция а так же удалена от оси х , как и профильная проекция а удалена от оси z , так как проекции а́ и а˝ имеют общую координату у .

    В случае, если точка лежит в любой из плоскостей проекций, то одна из ее координат равна нулю.

    Когда точка лежит на оси проекций, две ее координаты равны нулю.

    Если точка лежит в начале координат, все три ее координаты равны нулю.

    Проекции прямой

    Для определения прямой необходимы две точки. Точку определяют две проекции на горизонтальную и фронтальную плоскости, т. е. прямая определяется с помощью проекций двух своих точек на горизонтальной и фронтальной плоскостях.

    На рисунке 17 показаны проекции (а и á, b и ) двух точек А и В. С их помощью определяется положение некоторой прямой АВ . При соединении одноименных проекций этих точек (т. е. а и b, а́ и ) можно получить проекции аb и а́b́ прямой АВ.

    На рисунке 18 показаны проекции обеих точек, а на рисунке 19 – проекции проходящей через них прямой линии.

    Если проекции прямой определяются проекциями двух ее точек, то они обозначаются двумя рядом поставленными латинскими буквами, соответствующими обозначениям проекций точек, взятых на прямой: со штрихами для обозначения фронтальной проекции прямой или без штрихов – для горизонтальной проекции.

    Если рассматривать не отдельные точки прямой, а ее проекции в целом, то данные проекции обозначаются цифрами.

    Если некоторая точка С лежит на прямой АВ , ее проекции с и с́ находятся на одноименных проекциях прямой ab и а́b́ . Данную ситуацию поясняет рисунок 19.

    Следы прямой

    След прямой – это точка пересечения ее с некоторой плоскостью или поверхностью (рис. 20).

    Горизонтальным следом прямой называется некоторая точка H , в которой прямая встречается с горизонтальной плоскостью, а фронтальным – точка V , в которой данная прямая встречается с фронтальной плоскостью (рис. 20).

    На рисунке 21а изображен горизонтальный след прямой, а ее фронтальный след, – на рисунке 21б.

    Иногда также рассматривается профильный след прямой, W – точка пересечения прямой с профильной плоскостью.

    Горизонтальный след находится в горизонтальной плоскости, т. е. его горизонтальная проекция h совпадает с этим следом, а фронтальная лежит на оси х. Фронтальный след лежит во фронтальной плоскости, поэтому его фронтальная проекция ν́ совпадает с ним же, а горизонтальная v лежит на оси х.

    Итак, H = h , и V = ν́. Следовательно, для обозначения следов прямой можно применять буквы h и ν́.

    Различные положения прямой

    Прямую называют прямой общего положения , если она не параллельна и не перпендикулярна ни одной плоскости проекций. Проекции прямой общего положения тоже не параллельны и не перпендикулярны осям проекций.

    Прямые, которые параллельны одной из плоскостей проекций (перпендикулярны одной из осей). На рисунке 22 показана прямая, которая параллельна горизонтальной плоскости (перпендикулярная оси z), – горизонтальная прямая; на рисунке 23 показана прямая, которая параллельна фронтальной плоскости (перпендикулярна оси у ), – фронтальная прямая; на рисунке 24 показана прямая, которая параллельна профильной плоскости (перпендикулярна оси х ), – профильная прямая. Несмотря на то что каждая из данных прямых образует с одной из осей прямой угол, они не пересекают ее, а только скрещиваются с нею.

    Из-за того что горизонтальная прямая (рис. 22) параллельна горизонтальной плоскости, ее фронтальная и профильная проекции будут параллельны осям, определяющим горизонтальную плоскость, т. е. осям х и у . Поэтому проекции áb́ || х и a˝b˝ || у z . Горизонтальная проекция ab может занимать любое положение на эпюре.

    У фронтальной прямой (рис. 23) проекции аb || x и a˝b˝ || z , т. е. они перпендикулярны оси у , а потому в этом случае фронтальная проекция а́b́ прямой может занимать произвольное положение.

    У профильной прямой (рис. 24) аb || у, а́b || z , и обе они перпендикулярны оси х. Проекция а˝b˝ может располагаться на эпюре любым образом.

    При рассмотрении той плоскости, которая проецирует горизонтальную прямую на фронтальную плоскость (рис. 22), можно заметить, что она проецирует эту прямую и на профильную плоскость, т. е. она является плоскостью, которая проецирует прямую сразу на две плоскости проекций – фронтальную и профильную. Исходя из этого ее называют дважды проецирующей плоскостью . Таким же образом для фронтальной прямой (рис. 23) дважды проецирующая плоскость проецирует ее на плоскости горизонтальной и профильной проекций, а для профильной (рис. 23) – на плоскости горизонтальной и фронтальной проекций.

    Две проекции не могут определить прямую. Две проекции 1 и профильной прямой (рис. 25) без уточнения на них проекций двух точек этой прямой не определят положения данной прямой в пространстве.

    В плоскости, которая перпендикулярна двум заданным плоскостям симметрии, возможно существование бесчисленного множество прямых, для которых данные на эпюре 1 и являются их проекциями.

    Если точка находится на прямой, то ее проекции во всех случаях лежат на одноименных проекциях этой прямой. Обратное положение не всегда справедливо для профильной прямой. На ее проекциях можно произвольным образом указать проекции определенной точки и не быть уверенным в том, что эта точка лежит на данной прямой.

    Во всех трех частных случаях (рис. 22, 23 и 24) положения прямой по отношению к плоскости проекций произвольный ее отрезок АВ , взятый на каждой из прямых, проецируется на одну из плоскостей проекций без искажения, т. е. на ту плоскость, которой он параллелен. Отрезок АВ горизонтальной прямой (рис. 22) дает проекцию в натуральную величину на горизонтальную плоскость (аb = АВ ); отрезок АВ фронтальной прямой (рис. 23) – в натуральную величину на плоскость фронтальной плоскости V (áb́ = AB ) и отрезок АВ профильной прямой (рис. 24) – в натуральную величину на профильную плоскость W (a˝b˝ = АВ), т. е. представляется возможным измерить на чертеже натуральную величину отрезка.

    Иначе говоря, с помощью эпюр можно определить натуральные размеры углов, которые рассматриваемая прямая образует с плоскостями проекций.

    Угол, который составляет прямая с горизонтальной плос костью Н , принято обозначать буквой α, с фронтальной плоскостью – буквой β, с профильной плоскостью – буквой γ.

    Любая из рассматриваемых прямых не имеет следа на параллельной ей плоскости, т. е. горизонтальная прямая не имеет горизонтального следа (рис. 22), фронтальная прямая не имеет фронтального следа (рис. 23), а профильная прямая – профильного следа (рис. 24).