Статистика распределение случайной величины генеральная совокупность выборки. Генеральная и выборочная совокупности. Основные способы организации выборки

Генеральная совокупность – множество тех людей, сведения о которых стремится получить социолог в своем исследовании. В зависимости от того, насколько широкой будет тема исследования, настолько же широка будет генеральная совокупность.

Выборочная совокупность – уменьшенная модель генеральной совокупности; те, кому социолог раздает анкеты, кого называют респондентами, кто, наконец, представляет собой объект социологического исследования.

Кого именно относить к генеральной совокупности, определяют цели исследования, а кого включать в выборочную совокупность решают математические методы. Если социолог намеревается взглянуть на афганскую войну глазами ее участников, в генеральную совокупность войдут все воины-афганцы, но опрашивать ему придется небольшую часть – выборочную совокупность. Для того чтобы выборка точно отражала генеральную совокупность, социолог придерживается правила: любой воин-афганец, независимо от места жительства, места работы, состояния здоровья и других обстоятельств, должен иметь одинаковую вероятность попасть в выборочную совокупность.

Как только социолог определился с тем, кого он хочет опросить, он определил основу выборки . После чего решается вопрос о типе выборки.

Выборки делятся на три больших класса:

а) сплошные (переписи, референдумы). Опрашиваются все единицы из генеральной совокупности;

б) случайные ;

в) неслучайные.

Случайный и неслучайный типы выборки в свою очередь подразделяются на несколько видов.

К случайным относят:

1) вероятностную;

2) систематическую;

3) районированную (стратифицированную);

4) гнездовую.

К неслучайным относят:

1) «стихийную»;

2) квотную;

3) метод «основного массива».

Полный и точный перечень единиц выборочной совокупности образует основу выборки . Элементы, предназначенные для отбора, называются единицами отбора . Единицы отбора могут совпадать с единицами наблюдения, поскольку единицей наблюдения считается элемент генеральной совокупности, с которого непосредственно ведется сбор информации. Обычно единица наблюдения – это отдельный человек. Отбор из списка лучше всего производить, нумеруя единицы и используя таблицу случайных чисел, хотя часто используется квази-случайный метод, когда из перечня простого берется каждый n-й элемент.

Если основа выборки включает список единиц отбора, то структура выборки подразумевает их группирование по каким-то важным признакам, например, распределение индивидов по профессии, квалификации, полу или возрасту. Если в генеральной совокупности, к примеру, 30% молодежи, 50% людей среднего возраста и 20% пожилых, то и в выборочной совокупности должны соблюдаться те же самые процентные пропорции трех возрастов. К возрастам могут добавиться классы, пол, национальность и т.д. Для каждой устанавливаются процентные пропорции в генеральной и выборочной совокупности. Таким образом, структура выборки – процентные пропорции признаков объекта, на основании которых составляется выборочная совокупность.

Если тип выборки говорит о том, как попадают люди в выборочную совокупность, то объем выборки сообщает о том, какое их количество попало сюда.

Объем выборки – количество единиц выборочной совокупности. Поскольку выборочная совокупность – это часть генеральной совокупности, отобранной с помощью специальных методов, ее объем всегда меньше объема генеральной. Поэтому так важно, чтобы часть не искажала представления о целом, то есть репрезентировала его.

На достоверность данных влияют не количественные характеристики выборочной совокупности (ее объем), а качественные характеристики генеральной совокупности – степень ее однородности. Расхождение между генеральной и выборочной совокупностью называется ошибкой репрезентативности , допустимое отклонение – 5%.

Вот некоторые способы избежать ошибки:

    каждая единица генеральной совокупности должна иметь равную вероятность попасть в выборку;

    отбор желательно производить из однородных совокупностей;

    надо знать характеристики генеральной совокупности;

    при составлении выборочной совокупности надо учитывать случайные и систематические ошибки.

Если выборочная совокупность (выборка) составлена правильно, то социолог получает надежные результаты, характеризующие всю генеральную совокупность.

Каковы же основные методы выборки ?

Метод механической выборки , когда из общего списка генеральной совокупности через равные промежутки отбирается необходимое число респондентов (например, каждый 10-й).

Метод серийной выборки . При этом генеральная совокупность разбивается на однородные части и из каждой пропорционально отбираются единицы анализа (например, по 20% мужчин и женщин на предприятии).

Метод гнездовой выборки . В качестве единиц отбора выступают не отдельные респонденты, а группы с последующим сплошным исследованием в них. Данная выборка будет представительна, если состав групп схож (например, по одной группе студентов из каждого потока какого-нибудь факультета вуза).

Метод основного массива – опрос 60–70% генеральной совокупности.

Метод квотной выборки . Наиболее сложный метод, требующий определения не менее четырёх признаков, по которым проводится отбор респондентов. Применяется обычно при большой генеральной совокупности.

Весь массив особей определенной категории называется генеральной совокупностью. Объем генеральной совокупности определяется задачами исследования.

Если изучается какой-нибудь вид диких животных или растений, то генеральной совокупностью будут все особи этого вида. В данном случае объем генеральной совокупности будет очень большой и при расчетах он принимается за бесконечно большую величину.

Если изучается действие какого-нибудь агента на растения и животных определенной категории, то генеральной совокупностью будут все растения и животные той категории (вида, пола, возраста, хозяйственного назначения), к которой относились подопытные объекты. Это уже не очень большое количество особей, но еще недоступное для сплошного изучения.

Не всегда объем генеральной совокупности недоступен для сплошного исследования. Иногда изучаются небольшие совокупности, например, определяется средний удой или средний настриг шерсти у группы животных, закрепленных за определенным работником. В таких случаях генеральной совокупностью будет совсем небольшое количество особей, которые все исследуются. Небольшая генеральная совокупность встречается также при исследовании растений или животных, имеющихся в какой-нибудь коллекции, с целью характеристики определенной группы в данной коллекции.

Характеристики групповых свойств ( и т. д.), относящиеся ко всей генеральной совокупности, называются генеральными параметрами.

Выборка – группа объектов, отличающихся тремя особенностями:

1 это часть генеральной совокупности;

2 отобранная в случайном порядке, определенным образом;

3 исследуемая для характеристики всей генеральной совокупности.

Для того чтобы по выборке можно было получить достаточно точную характеристику всей генеральной совокупности, необходимо организовать правильный отбор объектов из генеральной совокупности.

Теорией и практикой разработано несколько систем отбора особей в выборку. В основу всех этих систем положено стремление обеспечить максимальную возможность выбора любого объекта из генеральной совокупности. Тенденциозность, предвзятость при отборе объектов для выборочного исследования препятствуют получению правильных общих выводов, делают результаты выборочного исследования непоказательными для всей генеральной совокупности, т. е. нерепрезентативными.

Для получения правильной, неискаженной характеристики всей генеральной совокупности необходимо стремиться обеспечить возможность отбора в выборку любого объекта из любой части генеральной совокупности. Это основное требование должно выполняться тем строже, чем более изменчив изучаемый признак. Вполне понятно, что при разнообразии, приближающемся к нулю, например в случае изучения цвета волос или перьев некоторых видов, любой способ отбора выборки даст репрезентативные результаты.

В различных исследованиях применяются следующие способы отбора объектов в выборку.

4 Случайный повторный отбор, при котором объекты изучения отбираются из генеральной совокупности без предварительного учета развития у них изучаемого признака, т. е. в случайном (для данного признака) порядке; после отбора каждый объект изучается и затем возвращается в свою генеральную совокупность, так что любой объект может попасть повторно в выборку. Такой способ отбора равносилен отбору из бесконечно большой генеральной совокупности, для которого разработаны основные показатели взаимоотношений между выборочными и генеральными величинами.

5 Случайный бесповторный отбор, при котором объекты, отобранные, как и при предыдущем способе, случайно, не возвращаются в генеральную совокупность и не могут повторно попасть в выборку. Это наиболее распространенный способ организации выборки; он равносилен отбору из большой, но ограниченной генеральной совокупности, что учитывается при определении генеральных показателей по выборочным.

6 Механический отбор, при котором производится отбор объектов из отдельных частей генеральной совокупности, причем эти части предварительно намечаются механически по квадратам опытного поля, по случайным группам животных, взятых из разных ареалов популяции и т. д. Обычно намечается столько таких частей, сколько предполагается взять объектов для изучения, поэтому число частей бывает равно численности выборки. Механический отбор иногда осуществляется выбором для изучения особей через определенное число, например при пропускании животных через раскол и отборе каждого десятого, сотого и т. д., или при взятии укоса через каждые 100 или 200 м, или отборе одного объекта через каждые встретившиеся 10, 100 и т. д. экземпляров при исследовании всей популяции.

8 Серийный (гнездовой) отбор, при котором генеральная совокупность разбивается на части – серии, некоторые из них исследуются целиком. Применяется этот способ с успехом в тех случаях, когда исследуемые объекты достаточно равномерно распределены в определенном объеме или на определенной территории. Например, при исследовании зараженности воздуха или воды микроорганизмами берут пробы, которые подвергаются сплошному исследованию. В некоторых случаях гнездовым способом могут быть обследованы также сельскохозяйственные объекты. При изучении выходов мяса и других продуктов переработки мясной породы скота в выборку можно взять всех животных этой породы, поступивших на два-три мясокомбината. При изучении величины яйца в колхозном птицеводстве можно в нескольких колхозах провести изучение этого признака у всего поголовья кур.

Характеристики групповых свойств (μ, s и т. д.), полученные для выборки, называются выборочными показателями.

Репрезентативность

Непосредственное изучение группы отобранных объектов дает, прежде всего, первичный материал и характеристику самой выборки.

Все выборочные данные и сводные показатели имеют значение в качестве первичных фактов, вскрытых исследованием и подлежащих тщательному рассмотрению, анализу и сопоставлению с результатами других работ. Но этим не ограничивается процесс извлечения информации, заложенный в первичных материалах исследования.

То обстоятельство, что объекты отбирались в выборку специальными приемами и в достаточном количестве, делает результаты изучения выборки показательными не только для самой выборки, но также и для всей генеральной совокупности, из которой взята эта выборка.

Выборка при определенных условиях становится более или менее точным отражением всей генеральной совокупности. Это свойство выборки называется репрезентативностью, что означает представительность с определенной точностью и надежностью.

Как и всякое свойство, репрезентативность выборочных данных может быть выражена в достаточной или в недостаточной степени. В первом случае в выборке получаются достоверные оценки генеральных параметров, во втором – недостоверные. Важно помнить, что получение недостоверных оценок не умаляет значения выборочных показателей для характеристики самой выборки. Получение же достоверных оценок расширяет область применения достижений, полученных при выборочном исследовании.

Это наука, которая, основываясь на методах теории вероятностей, занимается систематизацией и обработкой статистических данных для получения научных и практических выводов.

Статистическими данными называются сведения о числе объектов, обладающих теми или иными признаками.

Группа объектов, объединенных по некоторому качественному или количественному признаку, называется статистической совокупностью . Объекты, входящие в совокупность, называются её элементами, а их общее число - ее объемом.

Генеральной совокупностью называется множество всех мыслимо возможных наблюдений, которые могли бы быть сделаны при данном реальном комплексе условий или более строго: генеральной совокупностью называется случайная величина x и связанное с ней вероятностное пространство {W,Á,Р}.

Распределение случайной величины x называют распределением генеральной совокупности (говорят, например, о нормально распределенной или просто нормальной генеральной совокупности).

Например, если производится ряд независимых измерений случайной величины x, то генеральная совокупность теоретически бесконечна (т.е. генеральная совокупность - абстрактное, условно - математическое понятие); если же проверяется число дефектных изделий в партии из N изделий, то эту партию рассматривают как конечную генеральную совокупность объема N.

В случае социально-экономических исследований генеральной совокупностью объема N может быть население какого-то города, региона или страны, а измеряемыми признаками - доходы, расходы или объем сбережений отдельно взятого человека. Если какой-то признак имеет качественный характер (например, пол, национальность, социальное положение, род деятельности и т.п.), но принадлежит к конечному множеству вариантов, то он может быть также закодирован числом (как это часто делают в анкетах).

Если число объектов N достаточно велико, то провести сплошное обследование затруднительно, а иногда физически невозможно (например, проверить качество всех патронов). Тогда случайным образом отбирают из всей генеральной совокупности ограниченное число объектов и подвергают их изучению.

Выборочной совокупностью или просто выборкой объема n называется последовательность х 1 , х 2 , …, х n независимых одинаково распределенных случайных величин, распределение каждой из которых совпадает с распределением случайной величины x.

Например, результаты n первых измерений случайной величины x принято рассматривать как выборку объема n из бесконечной генеральной совокупности. Полученные данные называют наблюдениями случайной величины x, а также говорят, что случайная величина x "принимает значения" х 1 , х 2 , …, х n .


Основная задача математической статистики - сделать научно обоснованные выводы о распределении одной или более неизвестных случайных величин или их взаимосвязи между собой. Метод, состоящий в том, что на основании свойств и характеристик выборки делаются заключения о числовых характеристиках и законе распределения случайной величины (генеральной совокупности) называется выборочным методом.

Для того, чтобы характеристики случайной величины, полученные выборочным методом, были объективны, необходимо, чтобы выборка была репрезентативной, т.е. достаточно хорошо представляла исследуемую величину. В силу закона больших чисел можно утверждать, что выборка будет репрезентативной, если ее осуществить случайно, т.е. все объекты генеральной совокупности имеют одинаковую вероятность попасть в выборку. Для этого существуют различные виды отбора выборки.

1. Простым случайным отбором называется отбор, при котором объекты извлекаются по одному из всей генеральной совокупности.

2. Стратифицированный (расслоенный ) отбор заключается в том, что исходная генеральная совокупность объема N подразделяется на подмножества (страты) N 1 , N 2 ,…,N k , так что N 1 + N 2 +…+ N k = N. Когда страты определены, из каждого из них извлекается простая случайная выборка объема n 1 , n 2 , …, n k . Частным случаем стратифицированного отбора является типический отбор, при котором объекты отбирают не из всей генеральной совокупности, а из каждой типической ее части.

Комбинированный отбор сочетает в себе сразу несколько видов отбора, образующих различные фазы выборочного обследования. Существуют и другие методы организации выборки.

Выборка называется повторной , если отобранный объект перед выбором следующего возвращается в генеральную совокупность. Выборка называется бесповторной , если отобранный объект в генеральную совокупность не возвращается. Для конечной генеральной совокупности случайный отбор без возвращения приводит на каждом шаге к зависимости отдельных наблюдений, случайный равновозможный выбор с возвращением - к независимости наблюдений. На практике обычно имеют дело с бесповторными выборками. Тем не менее, когда объем генеральной совокупности N во много раз больше, чем объем выборки n (например, в сотни или тысячи раз), зависимостью наблюдений можно пренебречь.

Таким образом, случайная выборка х 1 , х 2 , …, х n - это результат последовательных и независимых наблюдений над случайной величиной ξ, представляющую генеральную совокупность, и все элементы выборки имеют тоже распределении, что исходная случайная величина x.

Функцию распределения F x (х) и другие числовые характеристики случайной величины x будем называть теоретическими, в отличие от выборочных характеристик , которые определяются по результатам наблюдений.

Пусть выборка х 1 , х 2 , …, х к есть результат независимых наблюдений случайной величины x, причем х 1 наблюдалось n 1 раз, х 2 - n 2 раза, …, х к - n к раз, так что n i = n - объем выборки. Число n i , показывающее, сколько раз появилось значение х i в n наблюдениях, называется частотой данного значения, а отношение n i /n = w i - относительной частотой . Очевидно, что числа w i рациональны и .

Статистическая совокупность, расположенная в порядке возрастания признака, называется вариационным рядом . Его члены обозначают x (1) , x (2), … x (n) и называют вариантами . Вариационный ряд называется дискретным , если его члены принимают конкретные изолированные значения. Статистическим распределением выборки дискретной случайной величины x называется перечень вариант и соответствующих им относительных частот w i . Полученная таблица называется статистическим рядом.

X (1) x (2) ... x k(k)
ω 1 ω 2 ... ω k

Наибольшее и наименьшее значения вариационного ряда обозначают x min и x max и называют крайними членами вариационного ряда.

Если изучается непрерывная случайная величина, то группировка заключается в разбиении интервала наблюдаемых значений на k частичных интервалов равной длины h, и подсчете числа попаданий наблюдений в эти интервалы. Полученные числа принимают за частоты n i (для некоторой новой, уже дискретной случайной величины). В качестве новых значений вариант x i обычно берутся середины интервалов (либо в таблице указываются сами интервалы). Согласно формуле Стерждеса рекомендуемое число интервалов разбиения k » 1 + log 2 n , а длины частичных интервалов равны h = (x max - x min)/k. Предполагается, что весь интервал имеет вид .

Графически статистические ряды могут быть представлены в виде полигона, гистограммы или графика накопленных частот.

Полигоном частот называют ломаную линию, отрезки которой соединяют точки (x 1 , n 1), (x 2 , n 2), …, (x k , n k). Полигоном относительных частот называют ломаную, отрезки которой соединяют точки (x 1 , w 1), (x 2 , w 2), …, (x k , w k). Полигоны обычно служат для изображения выборки в случае дискретных случайных величин (рис. 7.1.1).

Рис. 7.1
.1.

Гистограммой относительных частот называется ступенчатая фигура, состоящая из прямоугольников, основанием которых служат частичные интервалы длиною h , а высоты

равны w i /h.

Гистограмма обычно служит для изображения выборки в случае непрерывных случайных величин. Площадь гистограммы равна единице (рис. 7.1.2). Если на гистограмме относительных частот соединить середины верхних сторон прямоугольников, то полученная ломанная образует полигон относительных частот. Поэтому гистограмму можно рассматривать как график эмпирической (выборочной) плотности распределения f n (x). Если у теоретического распределения существует конечная плотность, то эмпирическая плотность является некоторым приближением теоретической.

Графиком накопленных частот называется фигура, строящаяся аналогично гистограмме с той разницей, что для расчета высот прямоугольников берутся не простые, а накопленные относительные частоты , т.е. величины . Эти величины не убывают, и график накопленных частот имеет вид ступенчатой "лестницы" (от 0 до 1).

График накопленных частот на практике используются для приближения теоретической функции распределения.

Задача. Анализируется выборка из 100 малых предприятий региона. Цель обследования - измерение коэффициента соотношения заемных и собственных средств (х i) на каждом i-ом предприятии. Результаты представлены в таблице 7.1.1.

Таблица Коэффициенты соотношений заемных и собственных средств предприятий.

5,56 5,45 5,48 5,45 5,39 5,37 5,46 5,59 5,61 5,31
5,46 5,61 5,11 5,41 5.31 5,57 5,33 5,11 5,54 5,43
5,34 5,53 5,46 5,41 5,48 5,39 5,11 5,42 5,48 5,49
5,36 5,40 5,45 5,49 5,68 5,51 5,50 5,68 5,21 5,38
5,58 5,47 5,46 5,19 5,60 5,63 5,48 5,27 5,22 5,37
5,33 5,49 5,50 5,54 5,40 5.58 5,42 5,29 5,05 5,79
5,79 5,65 5,70 5,71 5,85 5,44 5,47 5,48 5,47 5,55
5,67 5,71 5,73 5,05 5,35 5,72 5,49 5,61 5,57 5,69
5,54 5,39 5,32 5,21 5,73 5,59 5,38 5,25 5,26 5,81
5,27 5,64 5,20 5,23 5,33 5,37 5,24 5,55 5,60 5,51

Построить гистограмму и график накопленных частот.

Решение . Построим группированный ряд наблюдений:

1. Определим в выборке х min = 5,05 и x max = 5,85;

2. Разобьем весь диапазон на k равных интервалов: k » 1 + log 2 100 = 7,62; k = 8, отсюда длина интервала

Таблица 7.1.2. Сгруппированный ряд наблюдений

Номер Интервала Интервалы Середины интервалов х i w i f n (x)
5,05-5,15 5,1 0,05 0,05 0,5
5,15-5,25 5,2 0,08 0,13 0,8
5,25-5,35 5,3 0,12 0,25 1,2
5,35-5,45 5,4 0,20 0,45 2,0
5,45-5,55 5,5 0,26 0,71 2,6
5,55-5,65 5,6 0,15 0,86 1,5
5,65-5,75 5,7 0,10 0,96 1,0
5,75-5,85 5,8 0,04 1,00 0,4

На рис. 7.1.3 и 7.1.4, построенных по данным таблицы 7.1.2, представлены гистограмма и график накопленных частот. Кривые соответствуют плотности и функции нормального распределения, "подобранного" к данным.

Таким образом, распределение выборки является некоторым приближением распределения генеральной совокупности.

В предыдущем разделе нас интересовала распределение признака в некоторой совокупности элементов. Совокупность, которая объединяет все элементы, имеющая этот признак, называется генеральный. Если признак человеческий (национальность, образование, коэффициент IQ т.п.), то генеральная совокупность -- все население земли. Это очень большая совокупность, то есть число элементов в совокупности n велико. Число элементов называется объемом совокупности. Совокупности могут быть конечными и бесконечными. Генеральная совокупность - все люди хотя и очень большая, но, естественно, конечная. Генеральная совокупность - все звезды, наверное, бесконечно.

Если исследователь проводит измерение некоторой непрерывной случайной величины X, то каждый результат измерения можно считать элементом некоторой гипотетической неограниченной генеральной совокупности. В этой генеральной совокупности бесчисленная количество результатов распределены по вероятности под влиянием погрешностей в приборах, невнимательности экспериментатора, случайных помех в самом явлении и др.

Если мы проведем n повторных измерений случайной величины Х, то есть получим n конкретных различных численных значений, то этот результат эксперимента можно считать выборкой объема n из гипотетической генеральной совокупности результатов единичных измерений.

Естественно считать, что действительным значением измеряемой величины является среднее арифметическое от результатов. Эта функция от n результатов измерений называется статистикой, и она сама является случайной величиной, имеющей некоторое распределение называемая выборочным распределением. Определение выборочного распределения той или иной статистики -- важнейшая задача статистического анализа. Ясно, что это распределение зависит от объема выборки n и от распределения случайной величины Х гипотетической генеральной совокупности. Выборочное распределение статистики представляет собой распределение Х q в бесконечной совокупности всех возможных выборок объема n из исходной генеральной совокупности.

Можно проводить измерения и дискретной случайной величины.

Пусть измерение случайной величины Х представляет собой бросание правильной однородной треугольной пирамиды, на гранях которой написаны числа 1, 2, 3, 4. Дискретная, случайная величина Х имеет простое равномерное распределение:

Эксперимент можно производить неограниченное число раз. Гипотетической теоретической генеральной совокупностью является бесконечная совокупность, в которой имеются одинаковые доли (по 0.25) четырех разных элементов, обозначенных цифрами 1, 2, 3, 4. Серия из n повторных бросаний пирамиды или одновременное бросание n одинаковых пирамид можно рассматривать как выборку объема n из этой генеральной совокупности. В результате эксперимента имеем n чисел. Можно ввести некоторые функции этих величин, которые называются статистиками, они могут быть связаны с определенными параметрами генерального распределения.

Важнейшими числовыми характеристиками распределений являются вероятности Р i , математическое ожидание М, дисперсия D. Статистиками для вероятностей Р i являются относительные частоты, где n i -- частота результата i (i=1,2,3,4) в выборке. Математическому ожиданию М соответствует статистика

которая называется выборочным средним. Выборочная дисперсия

соответствует генеральной дисперсии D.

Относительная частота любого события (i=1,2,3,4) в сериях из n повторных испытаний (или в выборках объема n из генеральной совокупности) будет иметь биномиальное распределение.

У этого распределения математическое ожидание равно 0.25 (не зависит от n), а среднее квадратическое отклонение равно (быстро убывает с ростом n). Распределение является выборочным распределением статистики, относительная частота любого из четырех возможных результатов единичного бросания пирамиды в n повторных испытаниях. Если бы мы выбрали из бесконечной, генеральной совокупности, в которой четыре разных элемента (i=1,2,3,4) имеют равные доли по 0.25, все возможные выборки объемом n (их число также бесконечно), то получили бы так называемую математическую выборку объема n. В этой выборке каждый из элементов (i=1,2,3,4) распределен по биномиальному закону.

Допустим, мы выполнили бросания этой пирамиды, и число двойка выпало 3 раза (). Мы можем найти вероятность этого результата, используя выборочное распределение. Она равна

Наш результат оказался весьма маловероятным; в серии из двадцати четырех кратных бросаний он встречается примерно один раз. В биологии такой результат обычно считается практически невозможным. В этом случае у нас появится сомнение: является пирамида правильной и однородной, справедливо ли при одном бросании равенство, верно ли распределение и, следовательно, выборочное распределение.

Чтобы разрешить сомнение, надо выполнить еще один раз четырехкратное бросание. Если снова появится результат, то вероятность двух результатов с очень мала. Ясно, что мы получили практически совершенно невозможный результат. Поэтому исходное распределение неверное. Очевидно, что, если второй результат окажется еще маловероятней, то имеется еще большее оснований разобраться с этой "правильной" пирамидой. Если же результат повторного эксперимента будет и, тогда можно считать, что пирамида правильная, а первый результат (), тоже верный, но просто маловероятный.

Нам можно было и не заниматься проверкой правильности и однородности пирамиды, а считать априори пирамиду правильной и однородной, и, следовательно, правильным выборочное распределение. Далее следует выяснить, что дает знание выборочного распределения для исследования генеральной совокупности. Но поскольку установление выборочного распределения является основной задачей статистического исследования, подробное описание экспериментов с пирамидой можно считать оправданным.

Будем считать, что выборочное распределение верное. Тогда экспериментальные значения относительной частоты в различных сериях по n бросаний пирамиды будут группироваться около значения 0.25, являющегося центром выборочного распределения и точным значением оцениваемой вероятности. В этом случае говорят, что относительная частота является несмещенной оценкой. Поскольку, выборочная дисперсия стремиться к нулю с ростом n, то экспериментальные значения относительной частоты будут все теснее группироваться около математического ожидания выборочного распределения с ростом объема выборки. Поэтому является состоятельной оценкой вероятности.

Если бы пирамида оказалась направильной и неоднородной, то выборочные распределения для различных (i=1,2,3,4) имели бы отличные математические ожидания (разные) и дисперсии.

Отметим, что полученные здесь биномиальные выборочные распределения при больших n () хорошо апроксимируются нормальным распределением с параметрами и, что значительно упрощает расчеты.

Продолжим случайный эксперимент -- бросание правильной, однородной, треугольной пирамиды. Случайная величина Х, связанная с этим опытом, имеет распределение. Математическое ожидание здесь равно

Проведем n бросаний, что эквивалентно случайной выборке объема n из гипотетической, бесконечной, генеральной совокупности, содержащей равные доли (0.25) четырех разных элементов. Получим n выборочных значений случайной величины Х (). Выберем статистику, которая представляет собой выборочное среднее. Величина сама является случайной величиной, имеющей некоторое распределение, зависящее от объема выборки и распределения исходной, случайной величины Х. Величина является усредненной суммой n одинаковых, случайных величин (то есть с одинаковым распределением). Ясно, что

Поэтому статистика является несмещенной оценкой математического ожидания. Она является также состоятельной оценкой, поскольку

Таким образом, теоретическое выборочное распределение имеет тоже математическое ожидание, что и у исходного распределения, дисперсия уменьшена в n раз.

Напомним, что равна

Математическая, абстрактная бесконечная выборка, связанная с выборкой объема n из генеральной совокупности и с введенной статистикой будет содержать в нашем случае элементов. Например, если, то в математической выборке будут элементы со значениями статистики. Всего элементов будет 13. Доля крайних элементов в математической выборке будет минимальной, так как результаты и имеют вероятности, равные. Среди множества элементарных исходов четырех кратного бросания пирамиды имеются только по одному благоприятному и. При приближении статистик к средним значениям, вероятности будут возрастать. Например, значение будет реализоваться при элементарных исходах, и т. д. Соответственно возрастет и доля элемента 1.5 в математической выборке.

Среднее значение будет иметь максимальную вероятность. С ростом n экспериментальные результаты будут теснее группироваться около среднего значения. То обстоятельство, что среднее выборочного среднего равно среднему исходной совокупности часто используется в статистике.

Если выполнить расчеты вероятностей в выборочном распределении с, то можно убедиться, что уже при таком небольшом значении n выборочное распределение будет выглядеть как нормальное. Оно будет симметричным, в котором значение будет медианой, модой и математическим ожиданием. С ростом n оно хорошо апроксимируется соответствующим нормальным даже, если исходное распределение прямоугольное. Если же исходное распределение нормально, то распределение является распределением Стьюдента при любом n.

Для оценки генеральной дисперсии необходимо выбрать более сложную статистику, которая дает несмещенную и состоятельную оценку. В выборочном распределении для S 2 математическое ожидание равно, а дисперсия. При больших объемах выборок выборочное распределение можно считать нормальным. При малых n и нормальном исходном распределении выборочное распределение для S 2 будет ч 2 _распределение.

Выше мы попытались представить первые шаги исследователя, пытающегося провести простой статистический анализ повторных экспериментов с правильной однородной треугольной призмой (тетраэдром). В этом случае нам известно исходное распределение. Можно в принципе теоретически получить и выборочные распределения относительной частоты, выборочного среднего и выборочной дисперсии в зависимости от числа повторных опытов n. При больших n все эти выборочные распределения будут приближаться к соответствующим нормальным распределениям, так как они представляют собой законы распределения сумм независимых случайных величин (центральная предельная теорема). Таким образом, нам известны ожидаемые результаты.

Повторные эксперименты или выборки дадут оценки параметров выборочных распределений. Мы утверждали, что экспериментальные оценки будут правильными. Мы не выполняли эти эксперименты и даже не приводили результаты опытов, полученные другими исследователями. Можно подчеркнуть, что при определении законов распределений теоретические методы используются чаще, чем прямые эксперименты.

Раздел 2. Выборочная и генеральная совокупность

Генеральная и выборочная совокупности.

Статистическая совокупность

Генеральная (включает все единицы наблюдения, которые могут быть к ней отнесены в соответствии с целью исследования.) Генеральная совокупность может рассматриваться не только в пределах конкретных производств или территориальных границ, но также и ограничиваться другими признаками (пол, возраст) и их сочетанием.

Таким образом, в зависимости от цели исследования и его задач изменяются границы генеральной совокупности, для этого используют основные признаки, ее ограничивающие.

Выборочная (часть генеральной совокупности, которая должна быть репрезентативной по отношению к генеральной и наиболее полно отражать ее свойства). На основе анализа выборочной совокупности можно получить достаточно полное представление о закономерностях, присущих всей генеральной совокупности.

Выборочная совокупность должна быть репрезентативной, т. е. в отобранной части должны быть представлены все элементы и в таком же соотношении, как в генеральной совокупности. Иными словами, выборочная совокупность должна отражать свойства генеральной совокупности, т. е. правильно ее представлять. Репрезентативность должна быть количественной и качественной.

Количественная - основана на законе больших чисел и означает достаточную численность элементов выборочной совокупности, расчитываемую по специальным формулам и таблицам.

Качественная - основана на законе вероятности и означает соотвестиве (однотипность) призщнаков, характеризующих элементы выборочной совокупности по отношению к генеральной.

Методы формирования выборки:

-случайная выборка - отбор единиц наблюдния наугад.

-Механическая выборка - арифметический подход к отбору едниц наблдения типологическая выборка - при формировании генеральная совокупность предварительно делится на типы с послед. отбором единиц наблюдения из каждой типичесской группы. При этом число единиц можно отобрать пропорционально численности типической группы и непропорционально- Серийная выборка (гнездовой выбор) - формируется с помощью отбора не отдельных единиц наблюдения, а целых групп, серий, или гнезд, в состав которых входят организованные отдельным образом единицы наблюдения

Метод многоступенчатого отбора - по количеству этапов различают отдноступенчатый, двуступенчатый, терхступенчатый и т.д. метод направленного выбора - позволяет выявить влияние неизвестных факторов при устанавлении влияния известных

Алгоритмы параметрических критериев.

Параметрические критерии применяются для выборок с нормальным законом распределения. Формула расчета этих критериев содержат параметры выборки: среднее, дисперсии и др. Поэтому они называются параметрическими. Нормальность закона распределения должна быть статистически доказана с помощью одного из критериев согласия: критерий Пирсона, F-критерия Фишера, -критерия Колмогорова и др.


В ряде случаев параметрические критерии мощнее непараметрических критериев. У последних выше вероятность возникновения ошибки второго рода – принятия ложной нулевой гипотезы.


К параметрическим методам относятся следующие:

– Критерий Стьюдента

– Критерий Фишера

– Методы однофакторного анализа

– Методы двухфакторного анализа

Критерий Стьюдента


Назначение.
Критерий позволяет оценивать различия средних значений выборок, имеющих нормальное распределение.

Описание критерия.

Критерий применим для сравнения средних значений двух выборок полученных до и после воздействия некоторого фактора.

Данный критерий был разработан Уильямом Госсеттом для оценки качества пива в компании Гиннесс. В связи с обязательствами перед компанией по неразглашению коммерческой тайны (а руководство Гиннесса считало таковой использование статистического аппарата в своей работе), статья Госсетта вышла в журнале «Биометрика» под псевдонимом «Student» (Студент).

Зависимые(связанные) и независимые (несвязанные) выборки

При сравнении двух (и более) выборок важным параметром является их зависимость. Если можно установитьгомоморфную пару (то есть, когда одному случаю из выборки X соответствует один и только один случай из выборки Y и наоборот) для каждого случая в двух выборках (и это основание взаимосвязи является важным для измеряемого на выборках признака), такие выборки называютсязависимыми . Примеры зависимых выборок:

  • пары близнецов,
  • два измерения какого-либо признака до и после экспериментального воздействия,
  • мужья и жёны
  • и т. п.

В случае, если такая взаимосвязь между выборками отсутствует, то эти выборки считаютсянезависимыми , например:

  • мужчины иженщины ,
  • психологи иматематики .

Соответственно, зависимые выборки всегда имеют одинаковый объём, а объём независимых может отличаться.

Двухвыборочный t-критерий для независимых выборок


Для двух несвязанных выборок(наблюдения не относятся к одной и той же группе объектов) возможны два варианта расчета:

    • когда дисперсии известны
    • когда дисперсии неизвестны, но равны друг другу.

Где

квадратичного отклонения. Здесь и – оценки дисперсий.


Рассмотрим сначала равночисленные выборки. В этом случае

В случае наравночисленных выборок , выражение

В обоих случаев подсчет числа степеней свободы осуществляется по формулам

Понятно, что при численном равенстве выборок

Эмпирическое значениекритерия Стьюдента сравнивается с критическим значением(по таблице 1 приложения) для данного числа степеней свободы.


Нулевая гипотеза .

Пример рассчитаем на лабораторной работе.


Пример.

Психолог измерял время сложной сенсомоторной реакции выбора (в мс) в контрольной и экспериментальных группах. В экспериментальную группу (Х) входило 9 спортсменов высокой квалификации. Контрольной группой (Y) являлись 8 человек, активно не занимающиеся спортом. Психолог приверяет гипотезу о том, что средняя скорость сложной сенсомоторной реакции выбора у спортсменов выше, чем та же величина у людей, не занимающихся спортом.



Группы


Отклонения от среднего


Квадраты отклонений

X

Y

1

504

580

-22

-58

484

3368

2

560

692

34

54

1156

2916

3

420

700

-106

62

11236

3844

4

600

621

74

-17

5476

289

5

580

640

54

-2

2916

4

6

530

561

4

-77

16

5929

7

490

680

-36

42

1296

1764

8

580

630

54

-8

2916

64

9

470

-

-56

-

3136

-

Сумма

4734

5104

0

0

28632

18174

Среднее

526

638

Cредне арифметические значенияXи У:, в контрольной группе.

Тогда

^ Число степеней свободы k=9+8-2=15

По таблице приложения для данного числа степеней находим

Строим ось значимости






Т.о. обнаруженные психологом различия между экспериментальной и контрольной группами значимы более чем на 0,1% уровне или иначе говоря средняя скорость сложной сенсомоторной реакции выбора в группе спортсменов существенно выше чем в группе людей активно не занимающихся спортом.

В терминах статистических гипотез это утверждение звучит так: гипотеза Н0 о сходстве отклоняется и на 0,1% уровне значимости принимается альтернативная гипотеза Н1 – о различии между экспериментальной и контрольной группой.

Двухвыборочный t-критерий для зависимых(связанных) выборок

Под связанными выборками понимаются наблюдения для одной группы объектов, причем все наблюдения попарно связаны с каждый объектом исследования и характеризуют его состояние до воздействия и после воздействия некоторого фактора.

Гипотезы

: среднее значение в выборке не отличается от нуля.

: среднее значение в выборке отличается от нуля.

1. Предварительно проверяется нормальность закона распределения по одному из критериев согласия.

2. Рассчитывается(i=1..n) – попарные разности вариант,ирезультаты измерений дляi- го объекта до и после воздействия некоторого фактора. Величинубудем считать независимой для разных объектов и нормально распределенной

3. Рассчитываются (лучше в табличной форме): сумма попарных разностейи вспомогательные параметрыи.

4. Рассчитывается- эмпирическое значение критериястепенями свободы по формуле

Где n – численность выборки.

5.Найденное эмпирическое значение критерия Стьюдента сравнивается с критическим значением (по таблице 1 приложения) для данного числа степеней свободы.
Нулевая гипотеза при заданном уровне значимости принимается, если эмпирическое значение .

Критическое значение для выбранной вероятности и заданного числа степеней свободы можно найти по встроенной в Excel функции СТЬЮДРАСПОБР.


Пример.

Психолог предположил, что в результате тренировки, время решения эквивалентных задач (т.е. имеющих один и тот же алгоритм решения) будет значительно уменьшаться. Для проверки гипотезы у восьми испытуемых сравнивалось время решения (в минутах) первой и третьей задачи.


Решение задачи представим в таблице.


Номер испытуемого


1 задача


3 задача